World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NUCLEAR MATTER PHASE TRANSITION IN INFINITE AND FINITE SYSTEMS

    https://doi.org/10.1142/9789812701985_0031Cited by:0 (Source: Crossref)
    Abstract:

    A new “semiclassical” model of the nuclear matter, composed of u, d colored quarks, is proposed. The approach, named Constrained Molecular Dynamics (CoMD) is based on the molecular dynamics simulation of the quarks, which interact through the Richardson’s potential, and on a constraint due to Pauli blocking. With a suitable choice of the quark masses, some possible Equation of State (EOS) of the nuclear matter, at temperature equal to zero and finite baryon density, are obtained. These equations of state, not only present some known properties of the nuclear matter, as the Quark-Gluon Plasma (QGP) phase transition, but also shown the existence of a new state, the Exotic Color Clustering (ECC) state, in which cluster of quarks with the same color are formed. Some new quantities, “indicators” of the phase transition, are introduced: three order parameters, Mc2, Mc3, Mc4 defined trough the Gell-Mann matrices λα, and the lifetime of the J/Ψ particle. The behavior of the J/Ψ particle is studied also in the “finite” systems, obtained by expanding the corresponding “infinite” systems. It seems that the dynamics and the finite size effects do not wash completely the phase transition occurred in infinite systems, and the J/Ψ particle is still a good signature.