World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PROCESS MEASUREMENT IMPACT ON THE VERIFICATION UNCERTAINTY

    https://doi.org/10.1142/9789812702647_0012Cited by:0 (Source: Crossref)
    Abstract:

    Coordinate measuring machines are now widely used to qualify industrial pieces. Nevertheless, the actual CMM software’s usually restrict to the determination of mean values. This is the case for both the characterization of individual surfaces and for the determination of geometrical errors. However, in accordance with quality standards, the uncertainty of each measurement should also be defined. At last CIRP seminar, a new non linear least squares method has been proposed for that purpose to define the error bars of the parameters estimated for each measured surface. These values are deduced from the gap between the measured coordinates and the associated optimized surface. Our new presentation now extends to the propagation of such uncertainties to the determination of ISO1101 tolerances (dimensions and geometrical errors). To illustrate this approach, a specification was inspected on a true real industrial piece, with respect to the ISO 1101 standard. For this industrial application, different measurement procedures were proposed and carried out. The uncertainties of the estimated geometrical errors were then evaluated, showing the influence of the experimental method onto the reliability of the measurement. This example thus demonstrates the need to optimize the inspection process. To conclude our presentation, different aspects of the inspection are finally discussed to improve the verification of ISO 1101 specifications.