World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

UNDERSTANDING OBJECT FEATURE BINDING THROUGH EXPERIMENTATION AS A PRECURSOR TO MODELLING

    https://doi.org/10.1142/9789812702784_0028Cited by:0 (Source: Crossref)
    Abstract:

    In order to explore underlying brain mechanisms and to further understand how and where object feature binding occurs, psychophysical data are analysed and will be modelled using an attractor network. This paper describes psychophysical work and an outline of the proposed model. A rapid serial visual processing paradigm with a post-cue response task was used in three experimental conditions: spatial, temporal and spatio-temporal. Using a ‘staircase’, stimulus onset asynchrony for each observer for each condition was set in practice trails to achieve 50% error rates. Results indicate that spatial location information helps bind objects features and temporal location information hinders it. Our expectation is that the proposed neural model will demonstrate a binding mechanism by exhibiting regions of enhanced activity in the location of the target when presented with a partial post-cue. In future work, the model could be lesioned so that neuropsychological phenomena might be exhibited. In such a way, the mechanisms underlying object feature binding might be clarified.