World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

IMPROVING THE PERFORMANCE OF THE LMS AND RLS ALGORITHMS FOR ADAPTIVE EQUALIZER

    https://doi.org/10.1142/9789812704313_0063Cited by:0 (Source: Crossref)
    Abstract:

    In this paper, we present the experiment results of three adaptive equalization algorithms: least-mean-square (LMS) algorithm, discrete cosine transform-least mean square (DCT-LMS) algorithm, and recursive least square (RLS) algorithm. Based on the experiments, we obtained that the convergence rate of LMS is slow; the convergence rate of RLS is great faster while the computational price is expensive; the performance of that two parameters of DCT-LMS are between the previous two algorithms, but still not good enough. Therefore we will propose an algorithm based on H2 in a coming paper to solve the problems.