World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Carbon Nanotube Based Microwave Resonator Gas Sensors

    https://doi.org/10.1142/9789812708274_0003Cited by:4 (Source: Crossref)
    Abstract:

    This paper reviews our work on the development of microwave carbon nanotube resonator sensors for gas detection. The sensor consists of a radio frequency resonator coated with a layer of carbon nanotubes. Upon exposure to gasses, the resonant frequency of the sensor shifts to indicate the presence of gasses. Our experimental results demonstrate that the microwave carbon nanotube resonator sensor achieves a sensitivity of 4000 Hz/ppm upon exposure to ammonia and the resonant frequency is recovered when ammonia is evacuated. The sensing mechanism is dependent on electron transfer from the ammonia to the nanotubes. This sensor platform has great potential for wireless sensing network applications.