World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

On the extremal graph theory for directed graphs and its cryptographical applications

    https://doi.org/10.1142/9789812772022_0012Cited by:22 (Source: Crossref)
    Abstract:

    The paper is devoted to the graph based cryptography. The girth of a directed graph (girth indicator) is defined via its smallest commutative diagram. The analogue of Erdøos's Even Circuit Theorem for directed graphs allows to establish upper bound on the size of directed graphs with a fixed girth indicator. Size of members of infinite family of directed regular graphs of high girth is close to an upper bound.

    Finite automata related to members of such a family of algebraic graphs over chosen commutative ring can be used effectively for the design of cryptographical algorithm for different problems of data security (stream ciphers, data base encryption, public key mode an digital signatures).

    The explicit construction of infinite family of algebraic graphs of high girth defined over the arbitrarily chosen ring is given. Some results on their properties, based on theoretical studies or software implementations are given.