DEVELOPING RF-PHOTONICS COMPONENTS FOR THE ARMY'S FUTURE COMBAT SYSTEMS
The U.S. Army's Future Combat Systems are designed to support the future force with three integrated transformation phases: Concept and Technology Development, Systems Design, Demonstration and Production. The Concept and Technology Developments phase is creating new challenges and opportunities for radio frequency and microwave applications in global positioning, navigation, timing, communications, improved radar target detection, and new forms of combat identification.
The merging of photonics and microwave electronics may revolutionize the traditional microwave technologies and explore many new technology fields. This merging has led to several significant developments such as higher frequency of operation and the capability to change frequency faster with greater agility, the ability to use larger bandwidths at higher frequencies, to improve the stability low phase noise oscillators (useful for low Doppler Radar target detection) and for novel methods of phase array antenna steering. In this paper we review two important system milestones by merging optoelectronics with microwaves, the injection locked dual opto-electronic-oscillator (OEO) and the optical controlled microwave phased array antenna.