World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MULTIPARAMETRIC BIFURCATIONS IN AN ENZYME-CATALYZED REACTION MODEL

    https://doi.org/10.1142/9789812774569_0012Cited by:0 (Source: Crossref)
    Abstract:

    An exhaustive analysis of local and global bifurcations in an enzyme-catalyzed reaction model is carried out. The model, given by a planar five-parameter system of autonomous ordinary differential equations, presents a great richness of bifurcations. This enzyme-catalyzed model has been considered previously by several authors, but they only detected a minimal part of the dynamical and bifurcation behavior exhibited by the system.

    First, we study local bifurcations of equilibria up to codimension-three (saddle-node, cusps, nondegenerate and degenerate Hopf bifurcations, and nondegenerate and degenerate Bogdanov–Takens bifurcations) by using analytical and numerical techniques. The numerical continuation of curves of global bifurcations allows to improve the results provided by the study of local bifurcations of equilibria and to detect new homoclinic connections of codimension-three. Our analysis shows that such a system exhibits up to sixteen different kinds of homoclinic orbits and thirty different configurations of equilibria and periodic orbits. The coexistence of up to five periodic orbits is also pointed out. Several bifurcation sets are sketched in order to show the dynamical behavior the system exhibits. The different codimension-one and -two bifurcations are organized around five codimension-three degeneracies.