MINIMAL FLAVOUR MIXING OF QUARKS AND LEPTONS
Present situation in the flavour mixing of quarks and leptons is briefly reviewed and a new approach called the Minimal Flavour Mixing (MFM) is considered in detail. According to MFM the whole of the flavour mixing is basically determined by the physical mass generation of the first family of fermions. So, in the chiral symmetry limit when the masses of the lightest quarks, u and d, vanish, all the weak mixing angle vanish. This minimal pattern is shown to fit extremely well the already established CKM matrix elements and to give fairly distinctive predictions for the as yet poorly known ones. Remarkably, together with generically small quark mixing it also leads to the large neutrino mixing thus giving adequate solution to the solar and atmospheric neutrino oscillation problem. The possible origin of this approach in the MSSM extended by a high-scale SU(3)F chiral family symmetry is discussed.