World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Strongly Interacting Electroweak Theories and Their Five-Dimensional Analogs at the LHC

    https://doi.org/10.1142/9789812779762_0014Cited by:0 (Source: Crossref)
    Abstract:

    Strongly interacting theories of electroweak (EW) symmetry breaking provide an elegant solution to the hierarchy problem. In these models the EW symmetry can either be broken without a Higgs or by means of a composite Higgs boson. These scenarios have been recently investigated in the framework of 5-dimensional warped models that, according to the AdS/CFT correspondence, have a 4-dimensional holographic interpretation in terms of strongly coupled field theories. We describe the minimal Higgsless and composite Higgs model and show how they can successfully pass all the electroweak precision tests and solve the flavor problems. We explore the implications of these models at the LHC.