World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PHASE SEPARATION OF ATOMS IN OPTICAL LATTICES

    https://doi.org/10.1142/9789812794185_0035Cited by:0 (Source: Crossref)
    Abstract:

    We study dynamics of two species of fermionic atoms in optical lattices in the framework of the asymmetric Hubbard model. A common phenomenon, called phase separation is predicted to occur. We provide arguments on the existence of phase separation, accompanied by a rigorous proof that, even for a single hole case, the density wave state is unstable to the phase separation in the strong interaction limit. Using the state-of-the-art numerical techniques, we obtain the ground state phase diagram and investigate the quantum phase transition from the density wave to phase separation by studying both the corresponding charge order parameter and quantum entanglement. We also discuss experimental realization of phase separation in optical lattices.

    Note from Publisher: This article contains the abstract only.