World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CONTROL OF EYE AND ARM MOVEMENTS USING ACTIVE, ATTENTIONAL VISION

    The experimental research described here was done while the author was visiting the Vision and Robotics Laboratory at the University of Rochester. This research was supported by NSF grant no. IRI-9010899.

    https://doi.org/10.1142/9789812797780_0009Cited by:1 (Source: Crossref)
    Abstract:

    Recent related approaches in the areas of vision, motor control and planning are attempting to reduce the computational requirements of each process by restricting the class of problems that can be addressed. Active vision, differential kinematics and reactive planning are all characterized by their minimal use of representations, which simplifies both the required computations and the acquisition of models. This paper describes an approach to visually-guided motor control that is based on active vision and differential kinematics, and is compatible with reactive planning. Active vision depends on an ability to choose a region of the visual environment for task-specific processing. Visual attention provides a mechanism for choosing the region to be processed in a task-specific way. In addition, this attentional mechanism provides the interface between the vision and motor systems by representing visual position information in a 3-D retinocentric coordinate frame. Coordinates in this frame are transformed into eye and arm motor coordinates using kinematic relations expressed differentially. A real-time implementation of these visuomotor mechanisms has been used to develop a number of visually-guided eye and arm movement behaviors.