World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

INTELLIGENT CCTV FOR MASS TRANSPORT SECURITY: CHALLENGES AND OPPORTUNITIES FOR VIDEO AND FACE PROCESSING

    https://doi.org/10.1142/9789812834461_0030Cited by:2 (Source: Crossref)
    Abstract:

    CCTV surveillance systems have long been promoted as being effective in improving public safety. However due to the amount of cameras installed, many sites have abandoned expensive human monitoring and only record video for forensic purposes. One of the sought-after capabilities of an automated surveillance system is “face in the crowd” recognition, in public spaces such as mass transit centres. Apart from accuracy and robustness to nuisance factors such as pose variations, in such surveillance situations the other important factors are scalability and fast performance. We evaluate recent approaches to the recognition of faces at large pose angles from a gallery of frontal images and propose novel adaptations as well as modifications. We compare and contrast the accuracy, robustness and speed of an Active Appearance Model (AAM) based method (where realistic frontal faces are synthesized from non-frontal probe faces) against bag-of-features methods. We show a novel approach where the performance of the AAM based technique is increased by side-stepping the image synthesis step, also resulting in a considerable speedup. Additionally, we adapt a histogram-based bag-of-features technique to face classification and contrast its properties to a previously proposed direct bag-of-features method. We further show that the two bag-of-features approaches can be considerably sped up, without a loss in classification accuracy, via an approximation of the exponential function. Experiments on the FERET and PIE databases suggest that the bag-of-features techniques generally attain better performance, with significantly lower computational loads. The histogram-based bag-of-features technique is capable of achieving an average recognition accuracy of 89% for pose angles of around 25 degrees. Finally, we provide a discussion on implementation as well as legal challenges surrounding research on automated surveillance.