PASSIVE STANDOFF DETECTION OF SURFACE CONTAMINANTS: A NOVEL APPROACH BY DIFFERENTIAL POLARIZATION FTIR SPECTROMETRY
An approach for the passive standoff detection of surface contaminants by differential polarization FTIR spectrometry is proposed. The surface radiance modeling associated with the method is given. Unpolarized and polarized sensing measurements obtained with the CATSI sensor for the standoff detection of liquid agent VX deposited on high-reflectivity surfaces are presented. The analysis of results indicates that the differential polarization approach is well suited to mitigate sky radiance drifts, which favours unambiguous surface contaminant detections. An experimental and modeling study initiated to address the spectral polarization phenomenology is outlined. The design of an optimized FTIR sensor for differential polarization spectrometry measurements is discussed.