World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Tree-based Methods for Characterizing Tumor Density Heterogeneity

    https://doi.org/10.1142/9789813235533_0020Cited by:5 (Source: Crossref)
    Abstract:

    Solid lesions emerge within diverse tissue environments making their characterization and diagnosis a challenge. With the advent of cancer radiomics, a variety of techniques have been developed to transform images into quantifiable feature sets producing summary statistics that describe the morphology and texture of solid masses. Relying on empirical distribution summaries as well as grey-level co-occurrence statistics, several approaches have been devised to characterize tissue density heterogeneity. This article proposes a novel decision-tree based approach which quantifies the tissue density heterogeneity of a given lesion through its resultant distribution of tree-structured dissimilarity metrics computed with least common ancestor trees under repeated pixel re-sampling. The methodology, based on statistics derived from Galton-Watson trees, produces metrics that are minimally correlated with existing features, adding new information to the feature space and improving quantitative characterization of the extent to which a CT image conveys heterogeneous density distribution. We demonstrate its practical application through a diagnostic study of adrenal lesions. Integrating the proposed with existing features identifies classifiers of three important lesion types; malignant from benign (AUC = 0.78), functioning from non-functioning (AUC = 0.93) and calcified from non-calcified (AUC of 1).