World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

EPIDEMIOLOGICAL MODELS WITH DEMOGRAPHIC ALLEE EFFECT

    https://doi.org/10.1142/9789814271820_0003Cited by:3 (Source: Crossref)
    Abstract:

    Biological populations can be faced with two detriments simultaneously if they experience both parasitism and an Allee effect. While infection with disease causes additional mortality, the Allee effect is a demographic process describing depensation (i.e., population decline or reduced population growth at low densities in case of a 'strong' or 'weak' Allee effect, respectively). The joint interplay of disease spread and a strong Allee effect are investigated in mathematical models that consist of two differential equations (describing the susceptible and infectious part of the host population) with a cubic nonlinearity (modelling the Allee effect). Two different incidences are considered, namely frequency-and density-dependent transmission, which model the infection process at two opposite ends of a spectrum of possibilities. Various threshold quantities are derived and employed to explain infection disappearance, parasite invasion and host extinction. The comparison of dynamical behaviour in both models provides interesting insight how depensation and disease transmission interact at various population densities. The general impact of disease is (i) to depress the host population size in endemic equilibrium and (ii) to enlarge the likelihood of extinction. If the incidence is density-dependent, oscillatory dynamics are possible as well as the emergence of three endemic equilibria, rendering the population tristable. The latter scenario is discussed in detail with respect to implications for the conservation of endangered species and the management of pests such as invasive alien species. Critical parameter values are identified for which population persistence might be possible even at extremely large values of the basic reproduction number , which could be expected to drive the host extinct independent of the initial condition.