ATOM INTERFEROMETRY WITH A WEAKLY INTERACTING BOSE-EINSTEIN CONDENSATE
Bose-Einstein condensates have long been considered the most appropriate source for interferometry with matter waves, due to their maximal coherence properties. However, the realization of practical interferometers with condensates has been so far hindered by the presence of the natural atom-atom interaction, which dramatically affects their performance. We describe here the realization of a lattice-based interferometer based on a Bose-Einstein condensate where the contact interaction can be tuned by means of a Feshbach resonance, and eventually reduced towards zero. We observe a strong increase of the coherence time of the interferometer with vanishing scattering length, and see evidence of the effect of the weak magnetic dipole-dipole interaction. Our observations indicate that high-sensitivity atom interferometry with Bose-Einstein condensates is feasible, via a precise control of the interactions.