World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SYNTHETIC QUANTUM MANY-BODY SYSTEMS

    https://doi.org/10.1142/9789814282345_0020Cited by:0 (Source: Crossref)
    Abstract:

    This article discusses two different approaches to study the physics of quantum gases. We load a two-component Fermi gas of potassium atoms into an optical lattice and realize the Fermi-Hubbard model. We probe the crossover from a metal to a Mott insulator by measuring the number of doubly occupied lattice sites. A Bose-Einstein condensate placed into an ultrahigh-finesse optical cavity provides a many-body system with global interactions. We investigate this system in a regime where the physics of cavity optomechanics is revealed.