INVESTIGATION OF THE INFLUENCE OF A LOW-TIDE TERRACE ON WAVE LOADS USING THE BOUSSINESQ-TYPE MODEL TRITON
Computations of the Boussinesq-type wave model TRITON of wave propagation over a shallow foreshore with a varying low-tide terrace configuration were carried out. The results were compared with Scheldt flume physical experiments, using the same settings and post processing. The comparisons show that TRITON can model the wave propagation along shallow foreshores quite accurately as long as highly nonlinear effects do not play a significant role. Furthermore, the level of the low-tide terrace was found to influence the wave conditions at the toe of a fictive structure as follows: a) As the level of the low-tide terrace increases there is more energy dissipation and the significant wave height at the toe decreases, decreasing the hydraulic load. b) On the other hand, as the waves dissipate low-frequency energy is released and the spectral wave period at the toe increases, increasing the hydraulic load.