World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Sub-Doppler Measurement of Excited-State Rotational Constants and Rotational Coherence by Picosecond Multiphoton Ionization Mass Spectrometry

    https://doi.org/10.1142/9789814287616_0016Cited by:0 (Source: Crossref)
    Abstract:

    A method is presented here for one-photon sub-Doppler measurement of excited-state rotational constants and coherence of large polyatomic molecules. The method, which relies on the concept of purely rotational coherence in molecules, utilizes (polarized) picosecond pump-probe multiphoton ionization (MPI) mass spectrometry. It offers improved temporal resolution (pulse width limited) and is applicable to weakly or nonfluorescing molecules. The present implementation in a molecular beam provides measurements of the rotational constants in the excited (S1) state of trans-stilbene and gives information on the direction of the relevant transition moments involved. From the coherence decay of the initially prepared state we obtain the dephasing time, which we discuss in relation to experiments involving vibrational / rotational energy redistribution.