Electron Quantum Transport through a Mesoscopic Device: Dephasing and Absorption Induced by Interaction with a Complicated Background
Effect of a complicated many-body environment is analyzed on the chaotic motion of a quantum particle in a mesoscopic ballistic structure. The absorption and dephasing phenomena are treated on the same footing in the framework of a schematic microscopic model. The single-particle doorway resonance states excited in the structure via an external channel are damped not only because of the escape onto such channels but also due to ulterior population of the long-lived background states. The transmission through the structure is presented as an incoherent sum of the flow formed by the interfering damped doorway resonances and the retarded flow of the particles re-emitted by the environment.