World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

HYPER VELOCITY STARS AND THE RESTRICTED PARABOLIC 3-BODY PROBLEM

    https://doi.org/10.1142/9789814374552_0114Cited by:0 (Source: Crossref)
    Abstract:

    Motivated by detections of hypervelocity stars that may originate from the Galactic Center, we revist the problem of a binary disruption by a passage near a much more massive point mass. The six order of magnitude mass ratio between the Galactic Center black hole and the binary stars allows us to formulate the problem in the restricted parabolic three-body approximation. In this framework, results can be simply rescaled in terms of binary masses, its initial separation and binary-to-black hole mass ratio. Consequently, an advantage over the full three-body calculation is that a much smaller set of simulations is needed to explore the relevant parameter space. Contrary to previous claims, we show that, upon binary disruption, the lighter star does not remain preferentially bound to the black hole. In fact, it is ejected exactly in 50% of the cases. Nonetheless, lighter objects have higher ejection velocities, since the energy distribution is independent of mass. Focusing on the planar case, we provide the probability distributions for disruption of circular binaries and for the ejection energy. We show that even binaries that penetrate deeply into the tidal sphere of the black hole are not doomed to disruption, but survive in 20% of the cases. Nor do these deep encounters produce the highest ejection energies, which are instead obtained for binaries arriving to 0:1 – 0:5 of the tidal radius in a prograde orbit. Interestingly, such deep-reaching binaries separate widely after penetrating the tidal radius, but always approach each other again on their way out from the black hole. Finally, our analytic method allows us to account for a finite size of the stars and recast the ejection energy in terms of a minimal possible separation. We find that, for a given minimal separation, the ejection energy is relatively insensitive to the initial binary separation (see Sari, Kobayashi and Rossi 2010, ApJ 708, 605 for the full discussion).