World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PROTEINMORPHOSIS: A MECHANICAL MODEL FOR PROTEIN CONFORMATIONAL CHANGES

    https://doi.org/10.1142/9789814447300_0034Cited by:0 (Source: Crossref)
    Abstract:

    Proteinmorphosis is a physically-based interactive modeling system for simulating large or small conformational changes of proteins and protein complexes. It takes advantage of the cross-linked one-dimensional nature of protein chains. The user can, based on her chemical knowledge, pull pairs of points (lying either on a single protein or on different molecules) together by specifying geometric distance constraints. The resulting conformation(s) of the molecule(s) of interest is computed by an efficient finite element formalism taking into account elasticity of the protein backbone, van der Waals repulsions, hydrogen bonds, salt bridges and the imposed distance constraints. The conformational change is computed incrementally and the result can be visualized as an animation; complete interactivity is provided to position and view the proteins as desired by the user. Physical properties of regions on the protein can also be chosen interactively. The conformational change of calmodulin upon peptide binding is examined as a first experiment. It is found that the result is satisfactory in reproducing the conformational change that follows on peptide binding. We use Proteinmorphosis to study the cooperative hemoglobin oxygen binding mechanism in a second, more sophisticated, experiment. Different modeling strategies are designed to understand the allosteric (cooperative) binding process in this system and the results are found to be consistent with existing hypotheses.