World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

AN INTEGRATED APPROACH TO BLOOD-BASED CANCER DIAGNOSIS AND BIOMARKER DISCOVERY

    https://doi.org/10.1142/9789814583220_0009Cited by:2 (Source: Crossref)
    Abstract:

    Disrupted or abnormal biological processes responsible for cancers often quantitatively manifest as disrupted additive and multiplicative interactions of gene/protein expressions correlating with cancer progression. However, the examination of all possible combinatorial interactions between gene features in most case-control studies with limited training data is computationally infeasible. In this paper, we propose a practically feasible data integration approach, QUIRE (QUadratic Interactions among infoRmative fEatures), to identify discriminative complex interactions among informative gene features for cancer diagnosis and biomarker discovery directly based on patient blood samples. QUIRE works in two stages, where it first identifies functionally relevant gene groups for the disease with the help of gene functional annotations and available physical protein interactions, then it explores the combinatorial relationships among the genes from the selected informative groups. Based on our private experimentally generated data from patient blood samples using a novel SOMAmer (Slow Off-rate Modified Aptamer) technology, we apply QUIRE to cancer diagnosis and biomarker discovery for Renal Cell Carcinoma (RCC) and Ovarian Cancer (OVC). To further demonstrate the general applicability of our approach, we also apply QUIRE to a publicly available Colorectal Cancer (CRC) dataset that can be used to prioritize our SOMAmer design. Our experimental results show that QUIRE identifies gene-gene interactions that can better identify the different cancer stages of samples, as compared to other state-of-the-art feature selection methods. A literature survey shows that many of the interactions identified by QUIRE play important roles in the development of cancer.