World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A FUZZY DOMAIN ADAPTATION METHOD BASED ON SELF-CONSTRUCTING FUZZY NEURAL NETWORK

    https://doi.org/10.1142/9789814619998_0111Cited by:0 (Source: Crossref)
    Abstract:

    Domain adaptation addresses the problem of how to utilize a model trained in the source domain to make predictions for target domain when the distribution between two domains differs substantially and labeled data in target domain is costly to collect for retraining. Existed studies are incapable to handle the issue of information granularity, in this paper, we propose a new fuzzy domain adaptation method based on self-constructing fuzzy neural network. This approach models the transferred knowledge supporting the development of the current models granularly in the form of fuzzy sets and adapts the knowledge using fuzzy similarity measure to reduce prediction error in the target domain.