World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

The Effect of Pressure Ratio on Unsteady Fluid-Structure Interaction Characteristics of Ball Type Control Valve

    This project is supported by Xi'an Science and Technology Program and China Scholarship Council Program.

    https://doi.org/10.1142/9789814733878_0001Cited by:0 (Source: Crossref)
    Abstract:

    Two-way sequential fluid-structure interaction method was used to analyze and discuss the characteristics of unsteady fluid-structure interaction of the complex flow channel of a steam turbine ball type control valve. Research indicates that when the pressure ratio changes as a sine wave, its flow rate occurs a sine wave change, and the maximum flow rate value of 57.46kg•s-1 occurs in the minimum pressure ratio condition. The longitudinal force of the structure domain decreases with the reduction of the pressure ratio, and points to the opposite direction of the flow. The lateral force increases with the decrease of the pressure ratio, and points to the opposite direction of the flow. The maximum value of deformation and force of the structure domain changes consistently with the pressure ratio fluctuation. The maximum value of the structure domain stress is 28.67MPa, which is far less than the yield strength of the structure material, and the maximum deformation value is 3.25um.