World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Prediction and Optimization of Residual Stresses on Machined Surface and Sub-Surface in MQL Turning

    https://doi.org/10.1142/9789814733878_0015Cited by:0 (Source: Crossref)
    Abstract:

    Residual stress in the machined surface and subsurface is affected by materials, machining conditions, and tool geometry and can affect the component life and service quality significantly. Empirical or numerical experiments are commonly used for determining residual stresses but these are very expensive. There has been an increase in the utilization of minimum quantity lubrication (MQL) in recent years in order to reduce the cost and tool/part handling efforts, while its effect on machined part residual stress, although important, has not been explored. This paper presents a hybrid neural network that is trained using Simulated Annealing (SA) and Levenberg-Marquardt Algorithm (LM) in order to predict the values of residual stresses in cutting and radial direction on the surface and within the work piece after the MQL face turning process. Once the ANN has successfully been trained, an optimization procedure, using Genetic Algorithm (GA), is applied in order to find the best cutting conditions in order to minimize the surface tensile residual stresses and maximize the compressive residual stresses within the work piece. The optimization results show that the usage of MQL decreases the surface tensile residual stresses and increases the compressive residual stresses within the work piece.