World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

TIME-PARALLEL COMPUTATION OF PSEUDO-ADJOINTS FOR A LEAPFROG SCHEME

    https://doi.org/10.1142/S0129053304000219Cited by:1 (Source: Crossref)

    The leapfrog scheme is a commonly used second-order difference scheme for solving differential equations. If Z(t) denotes the state of a system at a particular time step t, the leapfrog scheme computes the state at the next time step as Z(t+1)=H(Z(t),Z(t-1),W), where H is the nonlinear time-stepping operator and W represents parameters that are not time-dependent. In this note, we show how the associativity of the chain rule of differential calculus can be used to compute a so-called adjoint, the derivative of a scalar-valued function applied to the final state Z(T) with respect to some chosen parameters, efficiently in a parallel fashion. To this end, we (1) employ the reverse mode of automatic differentiation at the outermost level, (2) use a sparsity-exploiting version of the forward mode of automatic differentiation to compute derivatives of H at every time step, and (3) exploit chain rule associativity to compute derivatives at individual time steps in parallel. We report on experimental results with a 2-D shallow water equations model problem on an IBM SP parallel computer and a network of Sun SPARCstations.