World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue – Unconventional Computation and Natural Computation 2013No Access

HYPERGRAPH AUTOMATA: A THEORETICAL MODEL FOR PATTERNED SELF-ASSEMBLY

    https://doi.org/10.1142/S0129054114400048Cited by:0 (Source: Crossref)

    Patterned self-assembly is a process whereby coloured tiles self-assemble to build a rectangular coloured pattern. We propose self-assembly (SA) hypergraph automata as an automata-theoretic model for patterned self-assembly. We investigate the computational power of SA-hypergraph automata and show that for every recognizable picture language, there exists an SA-hypergraph automaton that accepts this language. Conversely, we prove that for any restricted SA-hypergraph automaton, there exists a Wang Tile System, a model for recognizable picture languages, that accepts the same language. The advantage of SA-hypergraph automata over Wang automata, acceptors for the class of recognizable picture languages, is that they do not rely on an a priori defined scanning strategy.