World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON THE COMPLEXITY OF SOME ADAPTIVE POLLING ALGORITHMS IN GENERAL NETWORKS

    https://doi.org/10.1142/S0129054199000150Cited by:3 (Source: Crossref)

    We study the problem of adaptive polling in undirected general networks. Polling, also known as broadcast-confirm, consists a propagation round and a feedback round. In adaptive polling, a spanning tree of unknown topology is built dynamically during the propagation round, and feedback messages are free to choose their paths in order to adapt to traffic and fault situations. We study three adaptive polling algorithms and analyze their worst-case communication bit complexities in the propagation round. Then, we prove a lower bound on the worst-case communication bit complexity of Ω(e+nlog n) in the propagation round for all algorithms of the same kind as the three algorithms we study, where n is the number of nodes, and e the number of edges. We conclude that the cost introduced into the network due to the running of an adaptive polling algorithm is mild.

    A preliminary version of this paper was presented in SIROCCO'98 (June 1998) under the title "Adaptive Broadcast-Confirm Algorithms in General Networks and their Analysis."