World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

DYNAMICS OF COLLECTIVE MULTI-STABILITY IN MODELS OF MULTI-UNIT NEURONAL SYSTEMS

    https://doi.org/10.1142/S0129065714300046Cited by:18 (Source: Crossref)

    In this study, we investigate the correspondence between dynamic patterns of behavior in two types of computational models of neuronal activity. The first model type is the realistic neuronal model; the second model type is the phenomenological or analytical model. In the simplest model set-up of two interconnected units, we define a parameter space for both types of systems where their behavior is similar. Next we expand the analytical model to two sets of 90 fully interconnected units with some overlap, which can display multi-stable behavior. This system can be in three classes of states: (i) a class consisting of a single resting state, where all units of a set are in steady state, (ii) a class consisting of multiple preserving states, where subsets of the units of a set participate in limit cycle, and (iii) a class consisting of a single saturated state, where all units of a set are recruited in a global limit cycle. In the third and final part of the work, we demonstrate that phase synchronization of units can be detected by a single output unit.