World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Middle-Level Features for the Explanation of Classification Systems by Sparse Dictionary Methods

    https://doi.org/10.1142/S0129065720500409Cited by:14 (Source: Crossref)

    Machine learning (ML) systems are affected by a pervasive lack of transparency. The eXplainable Artificial Intelligence (XAI) research area addresses this problem and the related issue of explaining the behavior of ML systems in terms that are understandable to human beings. In many explanation of XAI approaches, the output of ML systems are explained in terms of low-level features of their inputs. However, these approaches leave a substantive explanatory burden with human users, insofar as the latter are required to map low-level properties into more salient and readily understandable parts of the input. To alleviate this cognitive burden, an alternative model-agnostic framework is proposed here. This framework is instantiated to address explanation problems in the context of ML image classification systems, without relying on pixel relevance maps and other low-level features of the input. More specifically, one obtains sets of middle-level properties of classification inputs that are perceptually salient by applying sparse dictionary learning techniques. These middle-level properties are used as building blocks for explanations of image classifications. The achieved explanations are parsimonious, for their reliance on a limited set of middle-level image properties. And they can be contrastive, because the set of middle-level image properties can be used to explain why the system advanced the proposed classification over other antagonist classifications. In view of its model-agnostic character, the proposed framework is adaptable to a variety of other ML systems and explanation problems.