World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

COHERENT STATES IN GRAVITATIONAL QUANTUM MECHANICS

    https://doi.org/10.1142/S0218271813500041Cited by:16 (Source: Crossref)

    We present the coherent states of the harmonic oscillator in the framework of the generalized (gravitational) uncertainty principle (GUP). This form of GUP is consistent with various theories of quantum gravity such as string theory, loop quantum gravity and black-hole physics and implies a minimal measurable length. Using a recently proposed formally self-adjoint representation, we find the GUP-corrected Hamiltonian as a generator of the generalized Heisenberg algebra. Then following Klauder's approach, we construct exact coherent states and obtain the corresponding normalization coefficients, weight functions and probability distributions. We find the entropy of the system and show that it decreases in the presence of the minimal length. These results could shed light on possible detectable Planck-scale effects within recent experimental tests.

    PACS: 04.60.Bc
    You currently do not have access to the full text article.

    Recommend the journal to your library today!