World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S0129065724500461Cited by:8 (Source: Crossref)

This study proposes an innovative expert system that uses exclusively EEG signals to diagnose schizophrenia in its early stages. For diagnosing psychiatric/neurological disorders, electroencephalogram (EEG) testing is considered a financially viable, safe, and reliable alternative. Using the reconstructed phase space (RPS) and the continuous wavelet transform, the researchers maximized the differences between the EEG nonstationary signals of normal and schizophrenia individuals, which cannot be observed in the time, frequency, or time-frequency domains. This reveals significant information, highlighting more distinguishable features. Then, a deep learning network was trained to enhance the accuracy of the resulting image classification. The algorithm’s efficacy was confirmed through three distinct methods: employing 70% of the dataset for training, 15% for validation, and the remaining 15% for testing. This was followed by a 5-fold cross-validation technique and a leave-one-out classification approach. Each method was iterated 100 times to ascertain the algorithm’s robustness. The performance metrics derived from these tests — accuracy, precision, sensitivity, F1 score, Matthews correlation coefficient, and Kappa — indicated remarkable outcomes. The algorithm demonstrated steady performance across all evaluation strategies, underscoring its relevance and reliability. The outcomes validate the system’s accuracy, precision, sensitivity, and robustness by showcasing its capability to autonomously differentiate individuals diagnosed with schizophrenia from those in a state of normal health.