World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
2. Environmental Science (Aerosol)No Access

MULTI-TECHNIQUE APPROACH TO MEASURE SIZE AND TIME RESOLVED ATMOSPHERIC AND RADIONUCLIDE AEROSOLS

    https://doi.org/10.1142/S0129083508001557Cited by:0 (Source: Crossref)

    Accurate quantifications of aerosol components are crucial to predict global atmospheric transport models. Recently developed International Monitoring System (IMS) network represents an opportunity to enhance comprehensive systematic aerosol observations on a global scale because it provides a global infrastructure. As such, a local pilot study utilizing several state-of-the-art instruments has been conducted at the peak of the Rattlesnake Mountain, Washington, USA, during three month periods (June-August) in 2003 to explore this opportunity. In this study, routine aerosol samples were collected using a 3-stage Cascade Impactor Beam Analyzer (0.07 to 2.5 µm) with time resolution about 6 hours on long Teflon strips while radionuclide aerosols were collected using Radionuclide aerosol sampler/analyzer (RASA) developed at Pacific Northwest National Laboratory. The elemental composition and hydrogen concentration were measured using proton induced x-ray emission (PIXE) and proton elastic scattering analysis (PESA), respectively. In addition, short and long-lived radionuclides that exist in nature were measured with same time resolution (6 hours) using RASA. In this method, high-resolution gamma-ray spectra were analyzed for radionuclide concentration. Combination of trace radioactive and non-radioactive element analysis in aerosols makes this investigation unique.