World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Application of PIXE in Medical and Biological SciencesNo Access

3D ANALYSIS OF AN INDUCED ATHEROSCLEROTIC LESION IN A MURINE ARTERY BY PIXE STACKING

    https://doi.org/10.1142/S0129083512400244Cited by:0 (Source: Crossref)

    Quantitative three dimensional analysis is possible, in principle, by PIXE tomography. But, the inherent problems in quantitation, restrictions on the sample geometry and preparation, and specimen damage due to high fluences make this method unsuitable for many biological samples. The specimen under investigation, a murine artery, was around a millimeter in diameter and the induced atherosclerotic lesion was spread few hundreds of micrometers across the length of the artery. Since no tomographic experiments were possible, we chose to do the 3D quantitative analysis by means of PIXE Stacking. Herein, thin serial sections of the specimen are prepared and measured by conventional ion beam techniques. The resultant two dimensional quantitative element maps are stacked and aligned to reconstruct a quantitative volume of the specimen. Although the reconstructed dimension has poorer spatial resolution as compared with the measured dimensions, new information can still be gained from it. The three dimensional element distribution of the atherosclerotic lesion shows calcification on the outer surface of the artery, which otherwise would not have been easily visible in the two dimensional analysis.