World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Proceedings of the 8th International Symposium on BioPIXE; Bled, Slovenia, September 14–19, 2014No Access

Micro-PIXE elemental mapping for ionome studies of crop plants

    https://doi.org/10.1142/S0129083514400142Cited by:37 (Source: Crossref)

    In order to maintain homeostasis and consequent optimal cell functioning and integrity and/or to avoid toxicity, proper allocation of elements at organ, tissue, cellular and subcellular level is needed. Studies of element localization are therefore crucial to reveal the mechanisms of element trafficking and also tolerance and toxicity. Moreover, studies of localization and speciation of trace elements in grains of staple crops are also of high applicative value, allowing one to determine major and trace element concentrations in different grain tissues without possible contamination.

    In the last decade, a remarkable progress has been made in the development and application of different 2D imaging techniques in complex biological systems, especially in the sense of improved lateral resolution and sensitivity. The superiority of micro-PIXE over other 2D imaging techniques lies in its wide elemental range (from sodium (Na) to uranium (U)), high elemental sensitivity below micron spatial resolution and fully quantitative element concentration analysis.

    The aim of this review is to summarize the latest development of micro-PIXE for imaging of the distribution of major and trace elements in crop plants with emphasis on sample preparation methodologies and post-imaging analysis. Case studies of element localization in the grains of major crop plants are also presented.