World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
SPECIAL ISSUE ON SPECTRAL SENSING RESEARCH FOR WATER MONITORING APPLICATIONS & FRONTIER SCIENCE AND TECHNOLOGY FOR CHEMICAL, BIOLOGICAL AND RADIOLOGICAL DEFENSE (VOL. 2) – Frontier Session; EDITED BY J. JENSEN AND D. WOOLARDNo Access

TUNABLE GRID GATED DOUBLE-QUANTUM-WELL FET TERAHERTZ DETECTOR

    https://doi.org/10.1142/S0129156408005229Cited by:0 (Source: Crossref)

    Several aspects of the theory of plasmon resonant DC photoconduction are discussed here, in connection with recent observations involving a THz-irradiated grid-gated double-quantum-well FET.1 In this, we construct a classical model of nonlinear polarizability to second order in the THz field using a “hydrodynamic” type formulation including the roles of a stress-tensor and friction/viscosity. The resulting second order polarizability exhibits resonant behavior when the THz frequency matches plasmon frequencies of the system, sharply reducing the effectiveness of screened impurity scattering potentials which can admit resonant DC photoconduction. Furthermore, we also show that an asymmetric double-quantum-well system with lateral periodicity can mix optical and acoustic plasmons, giving rise to an interlayer THz field which becomes very strong when tuned by gate voltage into the “mode-mode-repulsion” regime wherein the optical and acoustic modes equally share amplitude. This can enhance interlayer electron tunneling and may contribute to photoconductivity.

    Remember to check out the Most Cited Articles!

    Check out these Notable Titles in Antennas