World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
SPECIAL ISSUE ON SPECTRAL SENSING RESEARCH FOR WATER MONITORING APPLICATIONS & FRONTIER SCIENCE AND TECHNOLOGY FOR CHEMICAL, BIOLOGICAL AND RADIOLOGICAL DEFENSE (VOL. 2) – Frontier Session; EDITED BY J. JENSEN AND D. WOOLARDNo Access

COUMARIN DYE AS A FLUORESCENCE SENSOR FOR METHANOL VAPOR

    https://doi.org/10.1142/S0129156408005278Cited by:0 (Source: Crossref)

    The sol-gel method has been employed in the fabrication of mesoporous composite films consisting of a nonionic surfactant, Pluronic P123, as the organic component, and silica as the inorganic component. The hybrid nature of these films resulted in their having an internal structure consisting of nanometer size self-assembled organic mesostructures surrounded by a silica framework. These films served as the host matrix for the laser dye coumarin 481 (C481) and an energy transfer complex formed between C481 and J-aggregated meso-tetra(4-sulfonatophenyl)porphyrin (TSPP). Upon exposure to methanol vapor, a rapid and reversible decrease in fluorescence intensity occurs for films containing C481 alone as well as containing both C481 and TSPP. Steady-state and time-resolved spectroscopic studies suggest that the decrease in fluorescence intensity is primarily due to an excited state interaction between methanol and C481; while, additionally, morphological changes within the film appear to play a role for films containing both C481 and TSPP.

    Remember to check out the Most Cited Articles!

    Check out these Notable Titles in Antennas