World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SOME TOPOLOGICAL ASPECTS OF 4-FOLD SYMMETRIC QUANDLE INVARIANTS OF 3-MANIFOLDS

    https://doi.org/10.1142/S0129167X12500644Cited by:4 (Source: Crossref)

    The paper relates the 4-fold symmetric quandle homotopy (cocycle) invariants to topological objects. We show that the 4-fold symmetric quandle homotopy invariants are at least as powerful as the Dijkgraaf–Witten invariants. As an application, for an odd prime p, we show that the quandle cocycle invariant of a link in S3 constructed by the Mochizuki 3-cocycle is equivalent to the Dijkgraaf–Witten invariant with respect to ℤ/pℤ of the double covering of S3 branched along the link. We also reconstruct the Chern–Simons invariant of closed 3-manifolds as a quandle cocycle invariant via the extended Bloch group, in analogy to [A. Inoue and Y. Kabaya, Quandle homology and complex volume, preprint(2010), arXiv:math/1012.2923].

    AMSC: 57M27, 57M25, 57M12, 20J06, 58J28