World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Boundedness of solutions to Ginzburg–Landau fractional Laplacian equation

    https://doi.org/10.1142/S0129167X16500488Cited by:12 (Source: Crossref)

    In this paper, we give the boundedness of solutions to Ginzburg–Landau fractional Laplacian equation, which extends the Herve–Herve theorem into the nonlinear fractional Laplacian equation. We follow Brezis’ idea to use the Kato inequality. A related linear fractional Schrödinger equation is also studied.

    AMSC: 35R11, 35B53, 35J61, 35B45