Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Tribracket Modules

    https://doi.org/10.1142/S0129167X20500287Cited by:2 (Source: Crossref)

    Niebrzydowski tribrackets are ternary operations on sets satisfying conditions obtained from the oriented Reidemeister moves such that the set of tribracket colorings of an oriented knot or link diagram is an invariant of oriented knots and links. We introduce tribracket modules analogous to quandle/biquandle/rack modules and use these structures to enhance the tribracket counting invariant. We provide examples to illustrate the computation of the invariant and show that the enhancement is proper.

    AMSC: 57K10, 57K12