World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

STRUCTURAL PROPERTIES OF DIAMOND NANORODS: MOLECULAR-DYNAMICS SIMULATIONS

    https://doi.org/10.1142/S0129183103004644Cited by:8 (Source: Crossref)

    The structural properties of carbon nanorods obtained from diamond crystal have been investigated by performing molecular-dynamics computer simulations. Calculations have been realized by using an empirical many-body potential energy function for carbon. Diamond nanorods have been generated from three low-index planes of diamond crystal. It has been found that the average coordination number, cross-section geometry, and surface orientation from which the nanorod is generated play a role in the stability of diamond nanorods under heat treatment. The most stable diamond nanorod has been obtained from the (111) surface.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!