World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

REINFORCEMENT LEARNING WITH GOAL-DIRECTED ELIGIBILITY TRACES

    https://doi.org/10.1142/S0129183104006662Cited by:1 (Source: Crossref)

    The eligibility trace is the most important mechanism used so far in reinforcement learning to handle delayed reward. Here, we introduce a new kind of eligibility trace, the goal-directed trace, and show that it results in more reliable learning than the conventional trace. In addition, we also propose a new efficient algorithm for solving the goal-directed reinforcement learning problem.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!