PREDICTING BIOLOGICAL AGE FROM A SKIN SURFACE CAPACITIVE ANALYSIS
Abstract
The skin is the largest (and the most exposed) organ of the body both in terms of surface area and weight. Its care is of great importance for both aesthetics and health issues. Often, the skin appearance gives us information about the skin health status as well as hints at the biological age. Therefore, the skin surface characterization is of great significance for dermatologists as well as for cosmetic scientists in order to evaluate the effectiveness of medical or cosmetic treatments. So far, no in vivo measurements regarding skin topography characterization could be achieved routinely to evaluate skin aging. This work describes how a portable capacitive device, normally used for fingerprint acquisition, can be utilized to achieve measures of skin aging routinely. The capacitive images give a high resolution (50 μm) representation of skin topography, in terms of wrinkles and cells. In this work, we have addressed the latter: through image segmentation techniques, cells have been localized and identified and a feature related to their area distribution has been generated. Accurate experiments accomplished in vivo show how the feature we conceived is linearly related to skin aging. Besides, since this finding has been achieved using a low cost portable device, this could boost research in this field as well as open doors to an application based on an embedded system.
You currently do not have access to the full text article. |
---|