World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Link prediction based on the tie connection strength of common neighbor

    https://doi.org/10.1142/S012918311950089XCited by:4 (Source: Crossref)

    Traditional link prediction indices focus on the degree of the common neighbor and consider that the common neighbor with large degree contributes less to the similarity of two unconnected endpoints. Therefore, some of the local information-based methods only restrain the common neighbor with large degree for avoiding the influence dissipation. We find, however, if the large degree common neighbor connects with two unconnected endpoints through multiple paths simultaneously, these paths actually serve as transmission influences instead of dissipation. We regard these paths as the tie connection strength (TCS) of the common neighbor, and larger TCS can promote two unconnected endpoints to link with each other. Meanwhile, we notice that the similarity of node-pairs also relates to the network topology structure. Thus, in order to study the influences of TCS and the network structure on similarity, we introduce a free parameter and propose a novel link prediction method based on the TCS of the common neighbor. The experiment results on 12 real networks suggest that the proposed TCS index can improve the accuracy of link prediction.

    PACS No: 89.75.−k
    You currently do not have access to the full text article.

    Recommend the journal to your library today!