World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Improving diffusion-based recommendation in online rating systems

    https://doi.org/10.1142/S0129183121500947Cited by:2 (Source: Crossref)

    Network diffusion processes play an important role in solving the information overload problem. It has been shown that the diffusion-based recommendation methods have the advantage to generate both accurate and diverse recommendation items for online users. Despite that, numerous existing works consider the rating information as link weight or threshold to retain the useful links, few studies use the rating information to evaluate the recommendation results. In this paper, we measure the average rating of the recommended products, finding that diffusion-based recommendation methods have the risk of recommending low-rated products to users. In addition, we use the rating information to improve the network-based recommendation algorithms. The idea is to aggregate the diffusion results on multiple user-item bipartite networks each of which contains only links of certain ratings. By tuning the parameters, we find that the new method can sacrifice slightly the recommendation accuracy for improving the average rating of the recommended products.

    PACS: 89.75.Hc, 89.20.Ff, 05.70.Ln
    You currently do not have access to the full text article.

    Recommend the journal to your library today!