World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Integration of fuzzy logic in the SEIRD compartmental model for the analysis of intervention and transmission heterogeneity on SARS-CoV-2 transmission dynamics

    https://doi.org/10.1142/S0129183122500917Cited by:0 (Source: Crossref)

    Different epidemiological compartmental models have been presented to predict the transmission dynamics of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, we have proposed a fuzzy rule-based Susceptible-Exposed-Infectious-Recovered-Death (SEIRDSEIRD) compartmental model considering a new dynamic transmission possibility variable as a function of time and three different fuzzy linguistic intervention variables to delineate the intervention and transmission heterogeneity on SARS-CoV-2 viral infection. We have analyzed the datasets of active cases and total death cases of China and Bangladesh. Using our model, we have predicted active cases and total death cases for China and Bangladesh. We further presented the correspondence of different intervention measures in relaxing the transmission possibility. The proposed model delineates the correspondence between the intervention measures as fuzzy subsets and the predicted active cases and total death cases. The prediction made by our system fitted the collected dataset very well while considering different fuzzy intervention measures. The integration of fuzzy logic in the classical compartmental model also produces more realistic results as it generates a dynamic transmission possibility variable. The proposed model could be used to control the transmission of SARS-CoV-2 as it deals with the intervention and transmission heterogeneity on SARS-CoV-2 transmission dynamics.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!