World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PERMUTATION-BASED GENETIC, TABU, AND VARIABLE NEIGHBORHOOD SEARCH HEURISTICS FOR MULTIPROCESSOR SCHEDULING WITH COMMUNICATION DELAYS

    https://doi.org/10.1142/S021759590500056XCited by:21 (Source: Crossref)

    The multiprocessor scheduling problem with communication delays that we consider in this paper consists of finding a static schedule of an arbitrary task graph onto a homogeneous multiprocessor system, such that the total execution time (i.e. the time when all tasks are completed) is minimum. The task graph contains precedence relations as well as communication delays (or data transferring time) between tasks if they are executed on different processors. The multiprocessor architecture is assumed to contain identical processors connected in an arbitrary way, which is defined by a symmetric matrix containing minimum distances between every two processors. The solution is represented by a feasible permutation of tasks. In order to obtain the objective function value (i.e. schedule length, makespan), the feasible permutation has to be transformed into the actual schedule by the use of some heuristic method. For solving this NP-hard problem, we develop basic tabu search and variable neighborhood search heuristics, where various types of reduced Or-opt-like neighborhood structures are used for local search. A genetic search approach based on the same solution space is also developed. Comparative computational results on random graphs with up to 500 tasks and 8 processors are reported. On average, it appears that variable neighborhood search outperforms the other metaheuristics. In addition, a detailed performance analysis of both the proposed solution representation and heuristic methods is presented.