World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NEUTRINO ENERGY LOSS AT MATTER-RADIATION DECOUPLING PHASE

    https://doi.org/10.1142/S0217732309000577Cited by:1 (Source: Crossref)

    Neutrinos are produced copiously in the early universe. Neutrinos and antineutrinos ceased to be in equilibrium with radiation when the weak interaction rate becomes slower than the rate expansion of the universe. The ratio of the temperature of the photon to the temperature of the neutrino at this stage is Tγ/Tν = (11/4)1/3. We investigate the neutrino energy loss due to the oscillation of the electron neutrino into a different flavor in the charged-current interaction of νe-e- based on the work of Sulaksono and Simanjuntak. The energy loss from the neutrinos ΔEν during the decoupling of the neutrinos with the rest of the matter would be a gain in the energy of the electrons and can be obtained from the integration of stopping power equation ΔEν = (dEν/dT-1)dT-1 where Eν and T are the energy of the neutrinos and the temperature respectively. When the universe expands and matter-radiation decouples, an extra energy will be transferred to the photons via the annihilation of the electron-positron pairs, e++e-→γ+γ. This consequently will increase the temperature of the photons. The net effect to the lowest order is an increase in the ratio of the photon temperature to the neutrino temperature. The magnitude of energy loss of the neutrino is ∼10-4-10-5 MeV for the probability of conversion of νe → νi (i = μ,τ) between 0 to 1.0.

    PACS: 98.80.Es, 14.60.Lm, 26.30.Jk